

NATIONAL UNIVERSITY OF SCIENCE

AND TECHNOLOGY POLITEHNICA

OF BUCHAREST

Doctoral School of Electronics, Telecommunications and Information

Technology

Decision no. 126 from 09-11-2023

PhD Thesis Summary

Eng. Mihai ANTONESCU

Algorithmical and Architectural Improvements for a

Map-Reduce Hardware Accelerator

Optimizări algoritmice şi arhitecturale pentru un

accelerator hardware de tip Map-Reduce

THESIS COMMITTEE

Prof. Dr. Ing. Gheorghe Brezeanu

National University of Science and

Technology Politehnica of Bucharest

President

Prof. Dr. Ing. Gheorghe Ştefan

National University of Science and

Technology Politehnica of Bucharest

PhD Supervisor

Prof. Dr. Ing. Corneliu Burileanu

National University of Science and

Technology Politehnica of Bucharest

Reviewer

Prof. Dr. Ing. Aurel-Ştefan Gontean

Politehnica University Timişoara
Reviewer

Prof. Dr. Ing. Dan Nicula

Transilvania University of Braşov
Reviewer

BUCHAREST 2024

iii

Table of contents

Table of contents ...iii

Chapter 1 Introduction .. 1

1.1 Presentation of the field of parallel computing ... 1

1.2 Scope of this thesis .. 2

1.3 Content of this thesis ... 2

Chapter 2 Previous Form of the Map-Reduce Accelerator 3

2.1 Theoretical considerations... 3

2.2 Accelerator core .. 3

2.3 Instruction Set Architecture (ISA) .. 4

2.4 Accelerator system - hardware .. 4

2.5 Accelerator system - software ... 4

Chapter 3 Architectural Improvement: Scan-Permute-Reduce Network 5

3.1 Scan and Reduce ... 5

3.2 The Beneš-Wacksman permutation network .. 5

3.3 Implemented functions .. 5

3.4 Multi-Function Scan-Permute-Pack-Reduce circuit: hardware description.... 6

3.5 Sequential version ... 7

3.6 Control bits generation .. 7

3.7 Testing ... 7

3.8 Synthesis results .. 8

3.9 Integration into the Map-Reduce accelerator. The Map-Scan-Permute-Pack-

Reduce architecture .. 8

3.10 Conclusions ... 8

Chapter 4 Architectural Improvement: Parametrization and Reconfigurability 9

4.1 Rewriting and parametrization .. 9

4.2 Hardware reconfigurability and conditional synthesis 9

Chapter 5 Architectural Improvement: IO Size Generalization 11

5.1 Previous work .. 11

5.2 Improvements .. 11

5.3 Conclusions ... 12

Chapter 6 Architectural Improvement: Accumulator and Stack Processor 13

iv

6.1 Introduction ... 13

6.2 Implementation.. 13

Chapter 7 Architectural Improvement: Floating Point Support 15

7.1 Floating point operation description ... 15

7.2 Floating point additional hardware ... 15

7.3 Conclusions ... 16

Chapter 8 Architectural Improvements: Miscellaneous Improvements 17

8.1 Global rotate via global shift register (GSR) .. 17

8.2 Barell shifter for local Shift/Rotate operations ... 17

8.3 Array decode location ... 18

8.4 DMA mechanism for controller memory .. 18

8.5 Adding address registers ... 18

Chapter 9 Architectural Improvements: ISA Upgrades ... 19

9.1 New instruction format.. 19

9.2 Meaning and organization of opcodes .. 19

9.3 Instruction opcode compression .. 19

9.4 Jump/Branch.. 20

9.5 Swap accumulator and memory location .. 20

9.6 Shift/Rotate with fixed amount ... 20

9.7 Global Shift/Rotate with or without bool .. 21

9.8 Program load at any address.. 21

9.9 Address register operations ... 21

Chapter 10 Synthesis Results ... 23

10.1 Results ... 23

10.2 Conclusions ... 23

Chapter 11 Application-Level Improvements: AES Algorithm 25

11.1 Introduction ... 25

11.2 Implementation and results ... 25

11.3 Conclusions ... 26

Chapter 12 Application-Level Improvements: Square Matrix Transpose................ 27

12.1 Introduction ... 27

12.2 Map-Permute approach to the transpose ... 27

Chapter 13 Application-Level Improvements: Fast Fourier Transform (FFT) 29

13.1 Introduction and steps ... 29

13.2 FFT state of the art .. 29

v

13.3 FFT implementation and variants ... 29

13.4 FFT simulation results ... 30

13.5 Comparisons with other systems ... 31

13.6 Conclusions ... 32

Chapter 14 Miscellaneous Improvements .. 33

14.1 Study: Avoiding Latencies of Log-Depth Parallel Computational Patterns . 33

14.2 Testbench: program and IO support .. 33

14.3 Testbench: printing and debug options ... 33

14.4 Macro parsers .. 33

14.5 Petalinux and system ... 34

Chapter 15 Conclusions .. 35

15.1 Objectives and results.. 35

15.2 Original papers .. 36

15.3 Original contributions ... 36

15.4 Future work ... 37

Bibliography 7

Chapter 1

Introduction

1.1 Presentation of the field of parallel computing

The field of parallel computing comprises nowadays the majority of computation.

Single core machines have been relegated to a secondary position, being used in

embedded computations where computing power is less important than other

considerations. Within this field, over the decades, a shift in paradigms and approaches

has been observed. Most current parallel solutions for intense computation fall into two

main categories: off-the-shelf machines repurposed for the application in question and

application specific circuits (implemented as ASIC or in FPGA). These machines are

then connected to a host computer forming a heterogeneous system.

There is no one-size-fits-all solution, each solution being uniquely affected by the

combination of memory (in terms of both size and speed), single core power and

multi/many core scalability.

Current generation multi-core workstations are fundamentally derived from single

core chips, grouped together in a specific geometry. These solutions offer high single

core performance but cannot scale well into the thousands of cores range. They are

usually power hungry, with recent advances tackling this problem by combining

performance and economy cores on the same chip. A recent trend for these machines

sees adding AMX (Advanced Matrix eXtensions) in addition the already solidified

AVX (Advanced Vector eXtensions) hardware.

The most commonly used acceleration solution today, consists of GPUs used in the

context of general computing. As the name suggests, being a primarily graphics-

oriented device, it is not naturally suited to general purpose computation. However,

given the ease of access to these devices and the efforts put forth by Nvidia and AMD,

big improvements have been made into using this technology for various computations.

Given the ubiquitousness of machine learning in today’s computing landscape, current

generation GPUs have added dedicated hardware blocks (tensor cores) for the most

commonly used functions. Tensor cores have become a standard of modern GPUs,

Nvidia offering tutorials and tips on how to best use them [1], being evaluated from

multiple perspectives such as performance [2] [3] and numerical behaviour [2] [4].

Using tensor cores improves energy efficiency in AI applications (for which they were

designed) and potentially for other use cases (for example [5]), if code can be written

in such a fashion as to utilize them. The equivalent technology used by AMD is called

Matrix Core.

As the default acceleration solution, GPUs have impacted all computational

domains. The scientific community has treated this subject from multiple points of

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

2

view: actual computation, memory management and transfers, data embedding and

encoding. Heterogeneous computing techniques can be seen at [6] and optimization

techniques for GPUs are detailed at [7].

When even greater performance is desired, FPGA implemented hardware structures

can be used for acceleration of custom algorithms or specific computationally intensive

section. A step beyond lies acceleration using custom ASICs, a good example of this

approach being the TPU (Tensor Processing Unit).

1.2 Scope of this thesis

This thesis will focus on improving the "Connex" general-purpose many-core

accelerator and the development of a new parallel accelerator system, targeting FPGA

implementation. This accelerator is designed to be connected as tightly as possible to a

host computer/processor in order to offload data intensive tasks from it.

In order to validate the various architectural improvements, algorithms that make

use of these improvements have been written and tested.

Architectural improvements will include replacing the Reduce network with a Scan-

Permute-Pack network, making the accelerator fully parametrizable and reconfigurable,

IO interface generalizations, adding floating point support and others.

The three main algorithms developed for this machine will be the AES, the

Transpose algorithm for square matrices and the Fast Fourier Transform (FFT) in

different configurations.

1.3 Content of this thesis

This thesis details the work I have contributed on improving a custom many-core

Map-Reduce parallel architecture. This previous work is detailed in Chapter 2.

Chapter 3 explores the implementation of the Scan-Permute-Pack network that was

added to encompass the Reduce network and offer new functionalities.

Chapter 4 explains the implementation of parametrization and reconfigurability as

used in this architecture.

Chapter 5 is concerned with using this reconfigurability for IO improvement.

Chapter 6 and Chapter 7 are concerned with improving computational power inside

each cell, specifically by adding a stack mechanism and floating-point support.

Smaller miscellaneous hardware improvements are detailed in Chapter 8 and

changes to the ISA are detailed in Chapter 9. These changes range from changing the

ISA format to adding new instructions.

Synthesis results are presented and discussed in Chapter 10.

Chapter 11, Chapter 12 and Chapter 13 are concerned with application-level

improvements: AES, computing matrix transpose and computing FFTs.

A second set of miscellaneous improvements are presented in Chapter 14, this time

focussed on testing and system software.

Chapter 15 presents conclusions together with future work.

Chapter 2

Previous Form of the Map-Reduce

Accelerator

2.1 Theoretical considerations

Dissimilarly to serial machines, parallel computing hardware has had a completely

different birth, childhood and maturity in the present days. Serial machines followed a

normal development process, comprised of the following stages: (1) computational

model - the Turing Machine [8], (2) abstract model - Harvard/Von Neumann model,

(3) market growth and large-scale manufacturing, (4) architecture - x86, ARM, etc.

On the other hand, parallel machines followed a completely different track, starting

life as ad-hoc groupings of serial machines. Abstract machine models were eventually

developed but the underlying computational model for parallel computing was not

given proper attention. There is however a computational model that fits the parallel

approach published at around the same time as Turing’s, the Kleene model of partial

recursive functions [9]. Based on this model, the core architecture of the Connex

accelerator was defined and implemented, as described in [10], [11], [12].

The computing structure is defined by the composition rule from the mathematical

model and as shown in the above papers, the Map-Reduce abstract model is born.

2.2 Accelerator core

Given the previously mentioned abstract model, the accelerator architecture is based

around these two types of operations.

• Map operations that take a vector of input data and output a vector,

performing the same operation on all the data.

• Reduce operations that take a vector of input data and output a scalar.

Map operations are performed in an array of simple, cellular like, computing

machines, collectively named "Array". Reduce operations are performed through a log-

depth tree structure, a network of very simple cells, collectively called "Reduce". The

Reduce network is fed data and commands (the function it is to perform) by the Array.

In order to control operations in the Array, a third structure is required, the "Controller".

The resulting basic structure is presented below in Figure 2.1.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

4

Figure 2.1 Original Connex accelerator core structure

(adapted from [12])

2.3 Instruction Set Architecture (ISA)

One complete instruction (32b) for this machine is comprised of two normal

Assembler (ASM)-like instructions (16b): one that is executed in the Controller and one

that is executed in each active cell of the Array.

Each instruction is made of three components:

• OPCODE (5b) - used to select the desired operation;

• OPERAND (3b) - used to select the operand that is fed into the ALU

alongside the accumulator;

• VALUE (8b) - scalar value that can be interpreted as the operand value.

A more detailed description of all operations can be found in [13], chapter 2.1.3.

2.4 Accelerator system - hardware

The accelerator system was also developed at [13]. It is comprised of the following

main structures: Accelerator, ARM Cortex-A9 (Processing System), used as a HOST

and a DMA engine.

2.5 Accelerator system - software

In order for this hardware system to be used, an appropriate software stack is

needed. My colleagues developed a version of this software stack based on the PYNQ

Linux kernel available at [14]. The software stack was made up of: Hardware interface,

Linux Kernel, PYNQ system, Jupyter Notebook and Python environment.

Using this setup, linear algebra operations were performed on the accelerator. Data

was generated inside the Python environment, sent to the accelerator (together with

commands), computed inside the accelerator and finally extracted and displayed.

Chapter 3

Architectural Improvement: Scan-

Permute-Reduce Network

This chapter describes the creation, implementation, testing and integration of the

multifunction scan circuit described in [16] and expanded upon in [17].

3.1 Scan and Reduce

Reduce operations take an input vector and output a single value. On the other hand,

scan operations take an input vector and output another vector.

Scan operations perform the desired operation at each step and output the partial

result. As such, they are also known as Prefix operations. The final output of the scan

operation is in fact the result outputted by the reduce operation.

3.2 The Beneš-Wacksman permutation network

The original circuit structure I considered for scan type operations was that of the

permutation circuit developed by Vaclav E. Benes [18] and optimized by Abraham

Waksman [19]. This circuit allows all permutations of its inputs to be performed, given

the appropriate control bits. An example of a 16-input permutation network is shown

in Figure 3.1. Coloured in red are unnecessary cells (as shown by Abraham Waksman

in [19]) which will be present as simple pipeline registers without the multiplexers that

enable the permutation function. Coloured in green are the input and output layers and

in blue and yellow the two subnetworks, as per the recursive definition. Each

permutation cell is made up of two multiplexers, receiving both of the input operands,

each outputting one of the two data outputs.

3.3 Implemented functions

The following functions have been implemented in the final network: reduce add,

reduce min, reduce max, reduce and bitwise, reduce or bitwise, reduce xor bitwise, scan

add prefix, scan xor bitwise prefix, permute, pack.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

6

Figure 3.1 Benes-Wacksman permutation circuit - 16 input

example

3.4 Multi-Function Scan-Permute-Pack-Reduce

circuit: hardware description

Based on the structure and form provided by the Benes-Wacksman permutation

circuit, a new circuit was developed in order to provide multiple other operations. This

multi-function scan circuit was published in [16] and expanded upon in [17]. While the

networks form was kept unchanged, its cell’s structure was severely modified to

accommodate new functionality. The internal structure of the multifunctional cell is

shown in Figure 3.2.

Depending on each cell's position and on the functions the network is asked to

perform, its internal structure can vary significantly. This variation manifests itself in

the complexity of the control signals generator circuit and in the presence or absence of

some hardware blocks.

The two data movement operations implemented, Permute and Pack, require control

bits that act as selections for the two internal multiplexers in each cell. Each cell requires

one control bit in order to function properly. Since the network is pipelined, and in order

to reduce physical wiring complexity, the control bits are passed together with the data

they are supposed to guide, each cell “consuming” one control bit.

Architectural Improvement: Scan-Permute-Reduce Network

7

Figure 3.2 Multifunctional cell internal structure example

3.5 Sequential version

A sequential version of this network was also developed and tested, using only one

layer of permutation/computation cells and two multi-input multiplexers for each cell.

It is to be used when space is more important that performance. In the final accelerator

this version was discarded

3.6 Control bits generation

The generation of all needed control bits is a complex operation. It is split into two

stages: generation of control bits for each cell and assembly of the control bits going

backwards through the network (based on the path the bits will take) in order to obtain

control words. Code was written in C++ to perform this function.

3.7 Testing

In order to prove that this circuit correctly performs the proposed operations, a

SystemVerilog testbench was designed and written. This testbench generates input data

for each network input, feeds this input to both the hardware network and a non-

synthesizable golden model and finally compares the two outputs in order to validate

functionality. Separate test functions for each operation were developed. Transitions

between functions were also taken into account. The circuit passed all proposed tests.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

8

3.8 Synthesis results

Synthesis results for the multifunction network (Table 3.1) are presented below.

Synthesis was done targeting the ZYNQ7020 SoC found on a PYNQ-Z2 board.

Table 3.1 Multifunctional network synthesis result

Nr inputs Nr cells LUTs REGs
Average

LUTs/cell

Average

REGs/cell

8 20 1240 1459 62 73

16 56 3813 3921 68 70

32 144 10208 10368 71 72

64 352 25894 26252 74 75

128 832 63389 64146 76 77

256 1920 151180 152627 79 79

3.9 Integration into the Map-Reduce accelerator.

The Map-Scan-Permute-Pack-Reduce architecture

This network was developed having the accelerator described in Chapter 2 in mind,

specifically to come as a complement (or an improvement over) to the Reduce network

it already contains. As such, the reduce output can connect directly into the Controller

and all scan outputs can connect back into the Map/Cells section.

3.10 Conclusions

In this chapter, the development of our multi-function (Scan, Permute, Pack) circuit

was presented. This process involved conception, starting from the Benes-Waksman

permutation network, deciding on and implementing different functionalities, testing

each of these functions and finally integrating this design in the complete accelerator

structure.

This network can now perform multiple operations (as described in Chapter 3.3),

including all operations that the previous Reduce network could perform.

The use of macros and parametrization helps this circuit achieve a high degree of

flexibility, which in turn helped its integration in the accelerator structure.

For the Permute operation, there is a downside, the fact that computing the control

bits is a complicated process that cannot be trivially accelerated.

A second downside, although much smaller, is in regard to the Pack operation,

which requires a Prefix Add on the enable bits present in each cell, before it can be run.

Similarly, other 2-input variable, associative functions that support the inverse

operation can be implemented using this network shape, although circuits may not be

the most efficient implementation for all possible functions.

Chapter 4

Architectural Improvement:

Parametrization and

Reconfigurability

4.1 Rewriting and parametrization

The way in which the accelerator was initially written, albeit functional, was not

conformant with current good practices for software/hardware development. As such,

the entire code base was rewritten in an easier to understand and follow format.

With this occasion, an opportunity for advanced parametrization and

reconfigurability has arisen. We use the name parameters to refer to those macros that

can be changed and affect the underlying structure of the machine. Macros related to

numbering (for example ISA macros that number each instruction opcode) and macros

that can be derived from other macros are not considered parameters.

The most important parameters present are those pertaining to the number of cells,

the amount of memory present in each cell and if specific hardware features are present

or not.

4.2 Hardware reconfigurability and conditional

synthesis

Many hardware blocks were integrated into the accelerator in such a way as to be

conditionally synthesised. Depending on a multitude of factors, the code base offers a

trade-off between advanced hardware capabilities on one side and circuit size and

complexity on the other.

We view reconfigurability as one of the most important concepts brought about by

the explosion in FPGA size increase and adoption. On our architecture, this is very

important as it allows targeting hardware for specific applications while still being able

to bear the name "general purpose". In the context of an application, this accelerator

can obtain good results while not being fully reconfigurable (switching accelerators mid

application would be slow) and not using the same amount of hardware resources as

multiple dedicated accelerators for each subtask. In addition to this, hardware resources

not used for specific features can in turn be converted into more array cells that will

increase the degree of parallelism available.

Chapter 5

Architectural Improvement: IO

Size Generalization

5.1 Previous work

Both input and output interfaces are on 64 bits with additional control signals

connecting FIFOs and the propagation control mechanism. Since each cell requires 32

bits of data, 2 cells can be serviced at any one time, hence creating the dual-cell. A

further improvement (presented in [13]), created the "quad-cell", in order to have a total

throughput of 64 bits per cycle. Figure 5.1 exemplifies this concept.

Figure 5.1 IO quad cell organization

5.2 Improvements

While the form proposed in Figure 5.1 was both functional and efficient, in order

to keep in line with the concept of parametrization and reconfigurability presented in

Chapter 4, a generalization of this concept was in order. Thus, the

multicell/partial_multicell structure was created (see Figure 5.2).

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

12

Figure 5.2 IO multicell organization

Cells are grouped into partial multicells. All cells from within a partial multicell are

loaded in parallel. Multiple partials form a multicell. Each partial multicell from within

one Multicell is loaded and unloaded sequentially in relation to the other Partials. As

such, partial multicells become a generalization of dual-cells and multicells become a

generalization of quad-cells. This will help support large data busses at the system level.

5.3 Conclusions

While, for the current setup, this generalization is not strictly needed and can be

considered in excess (IO interface is at maximum 64 bits due to AXI Stream and system

level connections), considering the perspective of having other interfaces and an

unknown number of bits that can be parallelly transported, I view this improvement as

important.

Secondly, this flexibility can be leveraged to help the FPGA placement and routing

algorithms. While not yet tested, I theorize that for the same number of cells, some

arrangements can be more beneficial in terms of achievable clock speed.

Additionally, this organization allowed some of the options regarding Array

decoder location as explained in Chapter 8.3.

Chapter 6

Architectural Improvement:

Accumulator and Stack Processor

6.1 Introduction

Processors fall into three major categories:

• Register based - operations can occur between any two registers;

• Accumulator based - operations can occur between the Accumulator register

and a second operand;

• Stack based - operations occur between the Top of Stack (TOS) and a second

operand on the stack (usually, data right beneath it).

On our machine the register-based variant was discarded as the ISA format was

initially on 16b, too small to contain all desired opcodes and a significand number of

addressable general-purpose registers. Because of this reason and because performance

was not majorly impacted in a negative way, an accumulator-based approach with a

very large register file (used as second operand) was chosen.

Accumulator processors free up space in the instruction format, but unfortunately,

often require large amounts of load/store operations. On the other hand, a pure stack

processor is more restrictive regarding its second operand (it must also be on the stack),

but cuts even deeper into instruction format, as no operand address is usually needed.

Operations are performed between the Top of Stack (TOS) and the Under Top of Stack

(UTOS). An usual operation consumes both of these operands places the result as the

new TOS. From a sequential point of view, this can be seen as a double pop (2 operands)

followed by a push (result).

6.2 Implementation

A stack processor is not inherently better or worse than an accumulator processor

and in order to combine advantages from both approaches, the two concepts were

combined into an efficient hybrid machine.

An accumulator-based approach has proven highly efficient for this accelerator on

many problem classes and there was no need to completely discard it. In addition to it,

the stack mechanism allows storing of data for future use in an address independent

manner and was chosen for its simplicity in both hardware design and usage. The

resulting hardware structure is shown in Figure 6.1. Implemented stack specific

operations are shown in Figure 6.2.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

14

Figure 6.1 Stack processor hardware design

Figure 6.2 Stack operations

This improvement can also be seen as adding a new "addressing mode" for operand

selection.

Testing the proposed architecture proved successful, with many use cases in which

working with a stack improved function execution time. In use cases found thus far, it

has proven helpful for small improvements, chipping 1 instruction at a time, off the

accumulator only code. Over the course of larger programs and multiple nested loops

these small improvements can become significant.

Further testing is required in order to properly measure and judge the impact of this

addition to the architecture.

Chapter 7

Architectural Improvement:

Floating Point Support

7.1 Floating point operation description

Floating Point (FP) operation support has been added to the accelerator architecture.

All Floating Point operations are designed as microprograms. Each such

microprogram requires a number of clock cycles (see Table 7.1) until it is completed.

As the FP unit is not a separate coprocessor, no other computations can be done while

FP operations are in progress. Floating point operations with denormalized numbers, 0,

infinity, NaN are also supported.

Table 7.1 Floating point operations - clock cycles per operation

addition 7

subtraction 7

multiplication 7

division 57

7.2 Floating point additional hardware

In both Array and Controller all added hardware is identical.

In order to respect the concepts of reconfigurability and conditional synthesis,

floating point (FP) support is governed by two parameters (one for Controller and one

for Array). These parameters control if all FP operations are supported and if all FP

circuitry is present or not.

From the hardware point of view, FP operations require the barrel shifter/rotater be

present and a separate dedicated floating-point module. The floating-point module

contains a priority encoder, some registers, multiplexer, some additional data

processing logic and some control logic. This logic controls multiplexer selects, register

loads, and all control inputs for the barrel shifter/rotater. In regard to the barrel

shifter/rotater, an additional multiplexer had to be added.

From a circuit size point of view, the floating-point unit is almost as large as all the

other computation related circuitry in each cell (excluding the DSP primitive used) and

will require optimization in a future version.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

16

7.3 Conclusions

Floating Point operations were implemented and tested for both Array and

Controller.

These operations are written as microprograms as each cell does not have a FP

coprocessor. This allowed reuse of already present hardware resources.

Additional hardware had to be designed and integrated into the accelerator in order

for FP operations to function. The ALU and local shift register from each processing

core were also used in the microprograms which in turn reduced the amount of

additional hardware needed.

Floating point operations with denormalized numbers, 0, infinity, NaN are

supported.

The currently implemented floating point mechanism has one main drawback, the

fact that is occupies a large number of LUTs.

Chapter 8

Architectural Improvements:

Miscellaneous Improvements

8.1 Global rotate via global shift register (GSR)

The Global Shift Register (GSR) is used to move data between neighbouring cells

by shifting data to the right(initially). The GSR is distributed along the accelerator, one

shift register cell in each array cell. The current GSR cells are connected to their right

neighbours (sends data to the right), to their left neighbours (receives data from the left)

and to the accumulators from the cells they inhabit. The accumulator connection is

bidirectional allowing both load and store operation.

In order to better use this resource, multiple improvements were made. Firstly,

bidirectional data shifting was implemented. While storage elements remain the same

(one register per array cell), a multiplexer was added for left/right data selection. With

this hardware framework in place, rotate operations were also added. The resulting

hardware structure can be seen in Figure 8.1.

Figure 8.1 The Global Shift Register - improved

Additional instructions were also added in order to use these new hardware

capabilities.

8.2 Barell shifter for local Shift/Rotate operations

Shift/Rotate operations can also happen at the cell level, using data present in the

Accumulator. This type of bit shifting is very useful for multiple algorithms and was

implemented in both Controller and Array. Local shift/rotate operations required

additional hardware in order to be performed, specifically a Barrel Shifter (for rotate)

and a Bar Generator followed by “and” gates (for shift operations).

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

18

8.3 Array decode location

While initially, array instruction decoding happened in each computational cell, it

can now happen in one of four locations: (1) Controller: only one decoder is present for

all cells; (2) Multicell level; (3) Partial Multicell level; (4) Elementary Cell level: one

decoder per cell. The trade-off present here is between consumption of area (multiple

decoders results in a larger area) or higher congestion through the distribute net (if

decoding is done once and instructions are expanded into commands that need to be

transported). Further study is required concerning which of these approaches is optimal,

and how the term "optimal" is defined regarding this subject.

8.4 DMA mechanism for controller memory

While not as frequently used as the Array memory DMA, my colleagues and I

decided to also implement a DMA mechanism for the Controller memory. This

mechanism is still useful when relatively large amounts of data are to be passed to the

Controller and the program path used for function parameters would prove to be too

slow. Such cases include filter values for convolutions or precomputed keys for

cryptographic algorithms (ex: AES). It functions very similarly to its Array counterpart

described in [13] and [15].

8.5 Adding address registers

Both Controller and Array support indirect addressing modes based on the AddrReg

register. It holds the base address with which offsets are added to obtain the final

physical address. This addressing mechanism was initially the same for both Array and

Controller.

The indirect addressing modes it provides are valuable for 2 reasons. Firstly, some

programs (most intense computation) use clear addressing patterns and are greatly sped

up by this mechanism, especially by indirect addressing with AddrReg increment (for

strided access). Secondly, having a base address for data stored by each program (or by

each primitive function call) allows IO to happen on half of the Array memory while

the other half is used for computation. Thus, using this method, all addressing must be

done in a relative manner inside all programs written.

A problem arises when computation has multiple data access patterns, each

following a different rule. A second problem appears when multiple primitive function

calls are to process the same data, but the first one modifies the base address register.

In this situation, subsequent functions use an improper base address In the Controller,

as it is a single entity, the most flexible (and space consuming) solution was adopted.

This consists of having a base address register block and adding one additional

instruction for switching which specific register is active.

In the Array, as each cell has its own AddrReg, having a block in each cell, together

with all the additional circuitry needed for control and selection would increase circuit

size unnecessarily. A simple 2-layer stack structure was used.

Chapter 9

Architectural Improvements: ISA

Upgrades

9.1 New instruction format

The first and also most notable improvement was increasing the instruction size

from 16b to 32b. The size of the opcodes remains the same but having a larger value

that can be loaded helps with increasing all data processing and accelerator data sizes.

This instruction format was written in a parametrizable fashion, such that future

growth (if needed) is easily supported. Macros were used everywhere format and size

information was needed.

9.2 Meaning and organization of opcodes

All opcodes are generated using macros such that numbering and value assignment

is done automatically at elaboration.

For each family of opcodes (control or data operations), the exact location where

opcodes are executed (Controller or Array) also affects the precise numbering. The

same opcode can be used for different operations in Controller vs in Array.

One opcode can have up to 4 meanings, based on operand type and on where it ends

up being executed. Both the assembler software tool and the hardware synthesis tool

use the same files in order for each instruction to perform its desired function.

9.3 Instruction opcode compression

In the process of improving this architecture, new instructions had to be added and

at one point no more opcodes were left free for new assignations. This led to reducing

the number of used opcodes by grouping together similar instructions.

Originally, each ASM instruction had its own opcode, which left very few open

codes, especially for control type instructions. The adopted solution was to group

similar instructions together and use parts of the "value" field as a continuation of the

opcode, a type of secondary opcode. This method was adopted for jump/branch

instructions, stack control, spatial selection, fixed right shifting, special load/store,

global shifting and others.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

20

9.4 Jump/Branch

Two main upgrades were done to the jump/branch mechanism: adding the

"decrement register" and the "compare value register". Originally, all branches were

done with accumulator comparison.

The decrement register is used for branch with decrement instructions and allows

decrement and increment with settable values. It should be noted that the decrement

register is always subtracted, but it can hold negative values such that this subtraction

becomes an addition. This register is an extremely valuable feature as it allows cleaner

code that can be more easily understood. In some cases, the loop counter "i" is also

needed to compute addresses or other information for the array, and specific counting

direction or even increment or decrement with values different from "1" are needed.

This allows strided access in Array cell memory to be easily done via the Controller,

without needing additional Controller memory load/store steps.

All previous branch types depended on the accumulator and on the flags that it

governs: zero, carry, negative. For maximum flexibility regarding writing loops, I

wanted to also take into consideration the "if(accumulator == value)" case. As such, the

"value register" was born. Both equals and does not equal cases are taken into account,

each having its own jump/branch type ASM instruction. A secondary improvement was

made by allowing the value register to be incremented or decremented by the decrement

register and be itself checked for zero or negative. This created another level of

parallelism inside the Controller, uncoupling the accumulator from actual loop controls.

An additional feature developed was having a parametrizable number of value registers,

now also seen as loop counter registers. This was done to further improve control over

loops, especially in the case of nested for loops.

9.5 Swap accumulator and memory location

A new instruction was added to the ISA, one that swaps data between the

Accumulator and a location from memory. This can be viewed as a load combined with

a store instruction, both performed in the same clock cycle and is used for optimization

purposes.

Adding this new instruction required very small hardware changes in the decoder

area. The rest of the data paths and everything else needed was already in place, a proper

control mechanism being the only thing missing.

9.6 Shift/Rotate with fixed amount

In the original architecture only right shifting with "1" could be performed. Left

shifting could be done by multiplication with powers of two. This proved to be a

limiting factor in some applications.

For many applications, required shifting is always done with the same amount,

usually 8b. Because of how common this number is, relatively low hardware

requirements and the fact that this increases shift speed by a factor of up to 8 in some

cases, a special "shift with fixed amount" instruction was added to the ISA. Everything

Architectural Improvements: ISA Upgrades

21

related to this mechanism is parametrizable, its presence can be enabled or disabled and

the shift amount (if values other than "8" are needed) can also be set at synthesis. As

this mechanism is completely separated from the Barell Shifter, if all shifting in the

application is done using the same amount, a lot of area can be saved.

9.7 Global Shift/Rotate with or without bool

The Global Shift Register operated independently of cell status, specifically it did

not take into account if the Array cells were active or not. I devised and implemented

three types of shifting for the GSR (in both directions)

• Shift without Bool

Bool value is not taken into account when shifting, all cells perform the

operation. This was the version previously implemented.

• Shift with Bool and add "0"

If the current cell is inactive, its value stays the same. If it is active and if

the previous cell is inactive, previous cell value is ignored and a "0" is

inserted.

• Shift with Bool and hold

If the current cell is inactive, its value stays the same. If it is active and if

the previous cell is inactive, previous cell value is ignored and the current

cells value is held. This effectively duplicates values found at boundary

locations between active and inactive cells.

From a hardware point of view, the internal multiplexer of each GSR cell grew in

size, this being the major downside of adding these operations.

9.8 Program load at any address

Accelerator programming is usually done at the start of computation and initially

programs could only be loaded at address 0. To improve programmability, small

changes were made such that the program could be stored at any address in the

instruction memory.

9.9 Address register operations

For even more efficient usage of the Address register (in addition to what was

described in Chapter 8.5), additional operations were added for changing its value.

These operations are additions between the current register and data coming from one

of two sources: either the Accumulator or the "value" bits of the current instruction.

These instructions allowed great flexibility for address control as it allowed offsets

either computed in the Accumulator or from instruction value, to be directly added to

the AddrReg without any additional load or store operations.

Chapter 10

Synthesis Results

10.1 Results

This chapter presents synthesis results for different machine configurations, the

most important of which are shown in Table 10.1 and Table 10.2 below. Conditional

synthesis is employed and based on desired functionalities, the architecture is generated

with or without specific blocks. Synthesis was done targeting a Zynq 7020 SoC,

specifically a Pynq-Z2 board using Vivado 2022.2.2.

Additional parameters that are not subject to this test are:

• Memory sizes: data memory 1024 words, instruction memory 2048 words,

input, output, program in memories: 1024 words;

• Controller is fully synthesized, having a floating-point unit, selectable

address register and a data stack of depth 4;

• Array instruction decoder is set in the Controller;

• Data size: 32b.

Table 10.1 Synthesis results: Map-Reduce

Nr. cells Slice LUTs Slice REGs F7+F8 Muxes

8 9675 3827 761

16 11997 5337 765

32 17012 8654 752

64 26710 15152 743

128 46889 28031 734

Table 10.2 Synthesis results: Map-Scan-Permute-Pack, maximal Array cells

Nr. cells Slice LUTs Slice REGs F7+F8 Muxes

8 17683 6662 843

16 28512 11837 918

32 50957 23959 1024

64 97481 50703 1258

128 206631 110611 1772

10.2 Conclusions

From synthesis data, the following conclusions can be drawn:

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

24

• LUTs are the main resource that gets consumed with growing the accelerator

size.

• The number of BRAMs and DSPs available on each board also limits the

number of computational cells that can be generated. This however is not

the hardest restriction. For high-end FPGA devices, DSP units are in the low

thousands and BRAM blocks in the several hundreds range. RAM can also

be obtained from LUTs as distributed RAM. UltraRAM blocks are also an

option.

• Sizes of 256-1024cells can be synthesized on current generation high-end

FPGAs, depending on particular architecture customisation. The

parametrization and reconfiguration mechanism described in Chapter 4

proves very valuable in optimizing for size for specific classes of

applications that may or may not require the presence of all possible

functional blocks.

• The new IO mechanism, all the Controller improvements and the block

design needed to achieve system level functionality occupy roughly 11k

LUTs. This is a relatively large number for designs with a small number of

cells but becomes less and less relevant as the number of Array cells

increases.

• In terms of LUT usage, a maximal cell is roughly five times as large as a

minimal cell.

• Floating point support is relatively large in terms of resource usage and

should be avoided if the application permits it. Fixed point computation is

preferable.

• Floating point hardware support requires size optimizations.

• The multifunctional network itself, also occupies a large amount of space

even with conditionally synthesized cells. Its size is: 𝑛 × (2 × log2 𝑛 − 1)

network cells (roughly four times the number of cells of the reduce-only

network).

Current description is a mix of structural and behavioural descriptions, and its prime

objective is to provide a proof of concept for the architecture. In a subsequent

development phase, the circuit will undergo size optimization techniques.

Chapter 11

Application-Level Improvements:

AES Algorithm

11.1 Introduction

This chapter details the implementation of the Advanced Encryption Standard

(AES) algorithm on our custom Map-Scan-Permute accelerator architecture. This work

was presented at [20].

The Advanced Encryption Standard (AES) is a block cypher that was chosen by the

United States government to supersede the Data Encryption Standard (DES). The AES

is a symmetric key block cypher that supports multiple key sizes, specifically 128b,

192b and 256b. Multiple variants of the algorithm also exist, such as : Electronic

codebook (ECB), Cipher block chaining (CBC), Cipher feedback (CFB), Output

feedback (OFB), Counter (CTR)[21].

11.2 Implementation and results

The AES algorithm has two main stages: the key expansion and round

computations. The key expansion is used to transform the cypher key into multiple

keys, one used per round of encryption. Key size can be 128b, 192b or 256b, each key

size dictating the number of rounds the algorithm is performed for.

In our work, we have currently implemented a variant where each block of text is

encrypted on one cell, a pure SIMD approach, using the key computed and stored in the

Controller.

The first stage of the algorithm, the key expansion is done on the Controller as to

reduce energy consumption. For the next steps, the Controller is used for loop and

branch control, for memory address precomputing (when applicable) and for

distributing the expanded key to all cells. In the Array cells, data is stored as 8b per

memory location. The SubBytes step uses a look-up table stored in each cell. The Shift

Rows and the Mix Columns simply rearrange data and the Add Round Key is a basic

xor operation between data and received key.

The AES algorithm has been implemented for all three key sizes and for two modes

of operation: ECB and CTR. Latency results of these implementations are shown in

Table 11.1. The key expansion stage adds 5459 (128b key), 5741 (192b key), 8106

(256b key) additional clock cycles.

Additionally, transfer times can be negated by using the mechanisms described in

[13] and [15].

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

26

Table 11.1 AES 128 ECB - latency results in clock cycles[20]

 Number of cells

Number of

blocks
16 32 64 128

16 9353 n/a n/a n/a

32 18942 9353 n/a n/a

64 37688 19086 9353 n/a

128 75180 37832 19358 9353

256 150164 75324 38104 19886

512 300132 150308 75596 38632

According to [20] "AES192 follows the same general trends, with an increase of

roughly 21% compared to AES128. Similarly, AES256 has an increase in execution

time of 42% compared to AES128. The same trends are followed by both the ECB and

CTR variants.

Compared to the ECB variant, CTR grows by roughly 1.5%, 1.3%, and 1%,

depending on key size. This is observed over all combinations of number of blocks and

number of computational cells. The CTR mode only adds a few more operations at the

beginning and the end of the ECB mode."

In terms of throughput per core, if all devices taken into account are scaled to the

same frequency, the proposed accelerator is situated below other solutions found on the

market due to the very simple nature of its computational unit. We are however in the

same order of magnitude as other solutions, achieving 2.7 MB/s per core at a scaled

frequency of 1.6 GHz. GPU implementation from [22] offer 5.2 MB/s per core with

modern CPU implementations having performances of over 10 MB/s per core at the

scaled frequency.

However, based on the simplicity of our processing element and on previous power

estimations, we should be able to obtain roughly 2x Gbps/W compared to GPU

solutions.

11.3 Conclusions

The AES algorithm has been implemented on our accelerator and this

implementation offers decent, but not good performances in terms of throughput and

latency. The current implementation was done with a pure SIMD approach in mind.

Based on the nature of the AES algorithm, the accelerator's hardware resources are

not used to their fullest, specifically, the multifunctional network is not used and as

such, acceleration is limited. Compared to a single core machine, acceleration is

obtained through the separation of Control from data-oriented computation and through

the fact that the machine has multiple computational cores.

Chapter 12

Application-Level Improvements:

Square Matrix Transpose

12.1 Introduction

The transpose operation is one of the basic data movements required in linear

algebra. It involves switching data between a matrix’s lines and columns, such that line0

becomes column0, line1 becomes column1 etc. Time complexity of the transpose

algorithm on a pure serial machine is in O(𝑛2), passing sequentially through all the

elements in the matrix.

12.2 Map-Permute approach to the transpose

Our approach is structured around the permute function from our multifunctional

network. Using it, a complete size "n" vector can be transposed at a time, thus reducing

time complexity of the transpose algorithm to O(n). Inside the Array, data is stored into

each Cell's memory as shown in Figure 12.1 for a 16×16 matrix in a 16 cell Array. The

term "vertical vector" is used for columns and the term "horizontal vector" for lines.

Figure 12.1 Array data arrangement for a 16x16 matrix on 16 cells

Our approach is based on walking broken diagonals, specifically the main diagonal.

Data from one broken diagonal is processed at a time, in total "n" data values. At each

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

28

iteration of the main loop, each cell will output one data point and receive and store

another. For a transpose algorithm that processes "n" values at a time, the main problem

that needs to be addressed is how to avoid collisions at both reading and writing. One

cell can output only one data value and one cell can only receive one data value, per

iteration. For this reason, broken diagonals were chosen. This access pattern perfectly

fulfils the above mentioned requirement but will require some address computation

logic in order to properly read/write data from the appropriate locations. The algorithm

is structured in 3 steps and is exemplified in Table 12.1:

• Loading a broken diagonal;

• Permutation;

• Storage of a broken diagonal.

Table 12.1 Map-Permute transpose example

 step 1 0 5 a f 4 9 e 3 8 d 2 7 c 1 6 b

Initial

matrix:
step 2 0 5 a f 3 4 9 e 2 7 8 d 1 6 b c

0 1 2 3

4 5 6 7

8 9 a b

c d e f

step 3

0 x x x

x 5 x x

x x a x

x x x f

0 4 x x

x 5 9 x

x x a e

3 x x f

0 4 8 x

x 5 9 d

2 x a e

3 7 x f

0 4 8 c

1 5 9 d

2 6 a e

3 7 b f

With this approach, permutation bits need to be precomputed in advance, stored in

the main memory and loaded at the appropriate time. After a proof-of-concept

implementation, optimizations were considered and implemented.

This approach led to a time complexity of O(n) with a constant of around 13.

In the case of transposing matrices that are not square, padding with 0 is required

until a square form is reached.

Chapter 13

Application-Level Improvements:

Fast Fourier Transform (FFT)

13.1 Introduction and steps

This chapter details the design, functioning and performance of the Fast Fourier

Transform algorithm on our custom Map-Scan-Permute architecture. This work was

presented in [23].

Considered one of the backbone algorithms of modern computing the FFT is used

nowadays whenever the Discrete Fourier Transform needs to be computed and

computing it from the definition proves too slow. This algorithm reduces time

complexity from O(𝑛2) to 𝑂(𝑛 × log2(𝑛)).

The best-known variant of computing the FFT is the Cooley-Tukey algorithm and

is based on recursively computing smaller and smaller transforms [24].

By using complex numbers, the real and imaginary part was stored in two

successive memory locations and operations actually required multiple steps. Addition

required two addition operations while complex multiplication required four

multiplications, one addition and one subtraction. On our architecture 8.8 fixed point

complex numbers were used. Multiplication itself (being in fixed point) was done in

two steps: actual multiplication and right shift by 8.

13.2 FFT state of the art

As a very important algorithm in modern computing, FFT has been implemented

on all currently available platforms: GPUs, FPGAs, DSPs.

Surveys regarding FFT implementations can be found at [25] and [26].

Work regarding the FFT algorithm on previous versions of the accelerator can be

seen in [27] and [28].

13.3 FFT implementation and variants

As seen in Chapter 13.1, the FFT requires two types of operations:

• Data movement;

• Actual computation: addition, multiplication.

In adapting this algorithm to our architecture, each of these two categories had to

be taken into account. Computation is done in each Array cell and data movement is

done through the multifunctional network, specifically, by using the permute function.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

30

All computation was done using fixed point 8.8 arithmetic as a functional floating-

point unit was not developed at the time. Switching to floating point should not be

troublesome, however obtained results will suffer as these operations require six clock

cycles to be performed (see Chapter 7).

Algorithm validity was tested by comparing obtained results to a reference C++

implementation.

For proper hardware testing, multiple variants were developed, for smaller/larger

data sizes and for different modes of data organization. Vertical organization refers to

data held within one Array cell memory, at multiple addresses, while horizontal

organization refers to data being held within multiple Array cells, at the same address.

Variants are as follow:

• Pure serial - a purely serial monocore implementation

• "Dual core" variant - Controller + 1 Array cell

• Many-core variant: vertical. It is the many-core generalization of the

previous variant. Comprised of Controller and as many Array cells as

desired. The FFTs computed in each cell are completely independent of one

another.

• Many-core variant: horizontal. This variant makes use of all the cells and

the inherent parallelism of our hardware structure to improve the time it

takes to solve one FFT. Operations are performed in each cell and data

movement, the butterfly permutations, are done using the multifunctional

network, specifically, the permute function. This setup offers the lowest

latency of all variants discussed. It is, however, not as throughput efficient

as the vertical setup. This logarithmical decrease in performance comes

from the latency induced by the multifunctional network.

• Many-core variant: rectangle. The rectangular version comes into play when

the number of samples is greater than the number of Array cells. Data is

organized in a similar fashion to the horizontal version, but it now occupies

multiple memory locations. In this situation, a combination of the vertical

and horizontal approaches is used.

• Many-core variant: square. In addition to the previous variant, if the number

of memory lines occupied in each cell is equal to the number of cells in the

array (the rectangle is actually a square), another, more efficient algorithm

could be employed.

• Multiple small rectangles/squares organization. This organization allows

fine control over the throughput/latency compromise. Using less cells to

compute one FFT will increase throughput, but also latency, while using

more cells will decrease both.

13.4 FFT simulation results

In this section, results from simulating our multiple variants of FFT setups are

shown. All simulations were done targeting FPGA implementation, specifically a

ZYNQ7020 System on Chip. Throughput and latency accelerations are calculated in

Application-Level Improvements: Fast Fourier Transform (FFT)

31

reference to a purely sequential single core machine with a similar instruction set. All

results are shown in clock cycles and not actual frequencies in order to express

architectural improvements and not technological improvements. Transfer operations

are not included as at the point of testing that part of the system was not yet fully

functional. Additionally, transfer times can be completely negated as described in [13].

Evaluation results are obtained through direct simulation or estimations based on ASM

code metrics and direct simulation results.

Results discussed in this chapter can be summarized in Table 13.1, showing a FFT

with 256 samples in multiple configurations on a 64-cell machine. This is done in order

to show the versatility of our machine and the throughput versus latency compromise.

Table 13.1 FFT results: multiple versions with 256 samples

Number

of array

cells

Samples

per FFT

FFTs in

parallel

Cycles

per

sample

Through

put acc

Latency

acc

Latency

in clock

cycles

Data

config.

64 256 64 4.2 95.9 1.5 69752 Vertical

256 256 1 3.5 114.0 114.0 908 Horizontal

64 256 1 12.1 33.1 33.1 3121 Rectangle

64 256 2 10.7 37.5 18.7 5508 Rectangle

64 256 4 9.4 42.8 10.7 9659 Rectangle

64 256 8 8.1 49.5 6.1 16702 Rectangle

64 256 16 6.8 58.6 3.6 28257 Rectangle

64 256 4 4.5 89.2 22.3 4640 Square

13.5 Comparisons with other systems

"For comparison, the FFT 4096 was tested on three other systems: local testing (on

an Intel I7770HQ, 8CPU, 2.8 GHz) of a CPU implementation of the FFTW algorithm

[29] local testing (on an Nvidia GeForce GTX1050, 640 cores, 1.354 GHz) of a GPU

implementation [30] and FPGA Xilinx IP implementation (targeting ZYNQ 7020 SoC,

Vivado default settings) [31].

Frequency scaled, the CPU implementation achieved roughly 126 Mega samples

per second, the GPU 175, and our proposed general-purpose accelerator 207.

Something to note is that our implementation is in fixed point, while the CPU and GPU

operate in floating point, and as such an approximately 3×performance degradation is

expected when switching to floating point. Regarding fixed vs floating point

computation, it should be noted that with larger FFT sizes, fixed point additions and

multiplications accumulate errors and will no longer give the correct result. Another

thing to note is that compared to the GPU, our machine uses 64 cores instead of 640

and would be much more energy efficient. This also shows our architectural benefits as

the computing cores are much more efficiently used. The Xilinx IP configurator (on

default settings for fixed point FFT) offers a latency of 14465 cycles, roughly half of

what our machine offers. However, this IP targets only FFT computation, and is not a

general-purpose architecture."[23]

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

32

Comparisons between our accelerator and other FFT solutions from literature places

us between GPUs and FPGAs. This is to be expected as FPGA implementations are

tailored to the problem at hand, thus offering lower latencies and lower area usage, at a

price in versatility.

13.6 Conclusions

FFT, one of the backbone algorithms in digital signal processing pertains for

acceleration on our architecture. The work presented improves and expands previous

work shown in [27] and [28].

The parallel patterns that this algorithm uses are mainly Map (for computation) and

Permute, for which our machine is perfectly suited. The algorithm itself also has a high

degree of operational intensity (by which we understand the amount of computation

done per number of bytes transferred) and is also inherently parallelisable to using all

or almost all available processing cells.

Multiple data organization patterns have been explored and proven functional and

efficient, with each being suited to a specific scenario or to specific application

requirements. Vertical data organization in which each cell individually computes a

FFT is best when throughput acceleration is the only target. When latency is hard

constrained, the horizontal setup utilises all array cells for only one FFT and offers the

best latency accelerations achievable on this architecture. Combinations of the two

styles, in addition to being able to limit the number of cells attributed to each FFT gives

users fine control over the throughput-latency compromise.

A novel way of computing the FFT, specifically designed for this kind of Map-

Permute machine was also developed and tested. It shows that good throughput can be

achieved without paying a large price in latency, by designing appropriate software

solutions that make efficient use of the hardware resources and of other algorithms that

are well suited to this machine. In the square matrix organization of samples,

permutation network latency is hidden by using the transpose operation, an operation

that can be efficiently pipelined, whereas the rectangular setup could not.

Chapter 14

Miscellaneous Improvements

14.1 Study: Avoiding Latencies of Log-Depth Parallel

Computational Patterns

Based on the previously described algorithms and on our experience using the

accelerator, a study has been done regarding techniques for the reduction of latencies

pertaining to the Scan-Permute-Reduce network.

We have identified four methods with which latency can be avoided or hidden,

based on four applications developed. This study was presented and published at [32].

These methods mainly revolve around pipelining, either in its direct form or different

variants. Another important aspect discussed is the fact that in some situations, a

completely new algorithm can emerge, dramatically improving performance. The

algorithms and solutions for matrix-vector multiplication (pipelining), square matrix

transpose (block grouped pipelining), FFT (algorithmic improvements) and, pooling

(mixed function pipelining) are discussed.

14.2 Testbench: program and IO support

The original experimental setup was inflexible and an improved testbench, that

could more easily process both programs and data needed to be written. For ease of use,

a simple mechanism for comparatively testing the output file against a golden model

file was also developed.

14.3 Testbench: printing and debug options

Debugging Verilog simulations is a very arduous task. In order to simplify this

process, a complex printing to console mechanism was developed. Both continuous and

final printing of selectable hardware resources is supported.

14.4 Macro parsers

As this project is highly parametrized, different architectures can easily be

generated with minimal changes to a set of parameters. Changing the ISA was also

necessary on several occasions, which in turn produced a complete renumbering of

usable opcodes. In order to easily follow macro values a macro parser was needed.

These parsers require input files in Verilog/SystemVerilog containing the macros

whose values we want to see. The output file generated is a map/dictionary comprised

of pairs: "macro_name macro_value".

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

34

14.5 Petalinux and system

The previous version of the complete accelerator system used a Linux image

distributed by TUL, creators of the PYNQ-Z2 board for which we targeted

implementation. In order to have complete control over the software layer, our team

decided to rebuild the Linux image from scratch. Xilinx recommends building using

Petalinux, a set of software tools used specifically for embedded Linux development.

With complete access to the underlying operating system, multiple low-level

changes were possible. The most important of these changes is in reserving address

spaces for use only by the accelerator runtime environment and application, specifically

removing them from the main memory used by all other applications.

While image building and deployment proved troublesome, the Linux image was

successfully booted on the PYNQ-Z2 board. Using SSH, remote login via ethernet was

also possible.

As a first step, applications were written via Vitis SDK and then moved and tested

on the board. Another improvement was the addition of a complete on-board build

environment so that applications can be developed and tested locally. Writing basic test

applications proved troublesome as some drivers were missing and had to be rewritten.

The Petalinux system deployed is still running and used for testing different

versions of both the hardware accelerator itself, as well as of low-level SDK

components (specifically runtime environment and application build system).

Chapter 15

Conclusions

15.1 Objectives and results

My research was dedicated to improving the parallel processing capabilities of a

heterogeneous Map-Reduce system. Improvements were done in regard to both

hardware and software.

From a hardware point of view, three categories of improvements arise:

• readability, reconfigurability, parametrisation;

• small improvements and bugfixes;

• large improvements requiring dedicated hardware blocks.

Each of these categories received its due attention and time which resulted in a

powerful Map-Scan-Permute accelerator that can be easily reconfigured to fit

application needs and space constraints.

Large improvements were made in order to allow floating point computation and

Scan and Permute type operations. Introduction of the stack concept into our machine

also helped reduce the size (and the execution time) of critical loops. Different types of

shift and rotate instructions were also developed for both Array and each individual

cell.

While some additions were made as a response to a specific problem or situation,

some were also made in order to future proof the design. Such is the case for the

generalization of Array IO, some of the added branch instructions or the Controller

level DMA mechanism. Furthermore, numerous bugs were found and fixed.

From an application point of view, assembler code was written to both test the

newly developed features and emphasise them by using them in computation. The AES

algorithm has been adapted for our accelerator, a novel transpose algorithm was

developed, specifically suited to the Map-Permute type architecture and was then used

to efficiently compute the Fast Fourier Transform. The FFT algorithm was also

implemented on our architecture and subsequently tested in multiple forms. The

specific FFT form to be selected and used in applications, will depend on application

needs in terms of throughput and latency.

This system was then synthesized and implemented on a PYNQ-Z2 SoC in order to

prove its functionality. A Linux image was built to run on the ARM Cortex A9 in order

to build and test actual C/C++ applications.

To summarize, a fully functional heterogeneous computing system has been

developed, improved and implemented, a system that offers good performances in

terms of parallelism, scalability, latency and power consumption.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

36

15.2 Original papers

1) Mihai Antonescu, Gheorghe M. Stefan, "Politehnica" Univ. of Bucharest,

Romania: “Multi-function Scan Circuit”, International Semiconductor Conference

CAS2020; IEEE conference proceedings; doi: 10.1109/CAS50358.2020.9268048.

2) Mihai Antonescu, Mihaela Maliţa, Gheorghe M. Ştefan “Latency Hiding of Log-

Depth Scan and Reduce Networks in Heterogeneous Embedded Systems”, 29th

International Symposium for Design and Technology in Electronic Packaging

(SIITME), 2023, IEEE conference proceedings, accepted for publication.

3) Mihai Antonescu, Gheorghe M. Ştefan, "Multi-Function Scan Circuit for

Assisting the Parallel Computational Map Pattern", Romanian Journal of Information

Science and Technology (ROMJIST), Vol 27, Nr. 1 of 2024, accepted for publication.

4) Andreea-Cătălina Pietricică, Mihai Antonescu, George-Vlăduț Popescu.

"Evaluation of AES Cryptographic Algorithm on a General-Purpose Map-Scan

Accelerator", International Semiconductor Conference CAS2023, IEEE conference

proceedings, DOI: 10.1109/CAS59036.2023.10303705.

5) Mihai Antonescu, Mihaela Maliţa, “FFT on a Heterogeneous System with a

General-Purpose Map-Scan Accelerator”, Romanian Journal of Information Science

and Technology (ROMJIST), accepted for publication.

6) M. Antonescu, C. Bîra, “Discrete Gravitational Search Algorithm (DGSA)

applied for the Close-Enough Travelling Salesman Problem (TSP / CETSP)”;

International Semiconductor Conference CAS2019 Sinaia România; IEEE conference

proceedings; DOI:10.1109/SMICND.2019.8923719.

7) M. Vasile, S. Martoiu, N. Boukadida, M. Antonescu, A. Ulmamei, G. Stoicea,

R. Hobincu, C. Iordache and on behalf of the ATLAS TDAQ collaboration, “FPGA

implementation of RDMA for ATLAS readout with FELIX at high luminosity LHC”,

published 20 May 2022 • © 2022 IOP Publishing Ltd and Sissa Medialab, Journal of

Instrumentation, Volume 17, May 2022, DOI 10.1088/1748-0221/17/05/C05022.

15.3 Original contributions

The major original contributions of my work can be split into two categories:

hardware improvements and assembler programs written.

On the hardware side, the following were done:

• The Reduce network was improved as to support Scan operations,

Permutations and the Pack operation;

• Parametrization and conditional synthesis can now be used to customize the

accelerator as needed by the applications that it will run;

Conclusions

37

• The IO mechanism was improved to support external interfaces of different

sizes and to allow custom cell grouping;

• The accumulator architecture was improved to support stack operations. The

stack structure was added as an improvement to the accumulator;

• The Global Shift Register was updated to allow improved communication

between neighbouring cells;

• A Barell Shifter was added to each cell as to allow rotate and shift

operations;

• Improvement to the address register mechanism for improved memory

addressing;

• ISA was updated and compressed;

• Additional Branch type instructions were added for improved program

control;

• Other miscellaneous instructions were added;

• Bugfixes for any identified problems.

On the algorithmic side, the following algorithms were developed and tested:

• Algorithm for computing AES encryption;

• Algorithm for computing the square matrix transpose;

• Algorithm for computing the FFT.

The testbench used for simulation and testing was completely rewritten and a

simulation flow was developed in order to allow rapid algorithm testing and debugging.

Above the hardware level, the accelerator was integrated on a PYNQ-Z2 board. The

ARM processor on the ZYNQ system was used as the Host for our accelerator. A

Petalinux distribution was compiled from scratch and customized for our needs and the

accelerator was physically tested.

From these contributions, the papers presented in Chapter 15.2 were written.

15.4 Future work

As this project is still in development, a lot of work is still in need of being done. In

the following, I will briefly describe domains of interest and focus:

In the near future, there are two directions of work:

• Consolidation and bug fixing - testing and fixing bugs is needed in order to

progress, together with a thorough consolidation of the work done thus far,

specifically writing of proper documentation.

• Second proof of concept full application - the first full application to be done

as a proof of concept was matrix multiplication [13]. At this point, the

software stack has changed in almost every aspect and as such, a second test

is needed. This test should pass through all layers of the software stack, from

the highest layer of C/C++ user applications, all the way down to the

assembler library of functions with computation done on the FPGA

implemented accelerator.

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

38

In the medium future, there are the following tasks that need doing:

• Development of the assembler primitive functions library;

• Development of the C/C++ function library that calls upon the primitive

function library;

• Software tool development: assembler, profiler, tuner, debugger, IDE with

GUI, runtime environment, continuous integration for git, installation

scripts, cross compilation support etc;

• Hardware support for on board debugging;

• Hardware circuit optimizations - size reduction in LUTs and REGs coupled

with higher working frequencies;

• Testing a larger accelerator, having more computational cells (128, 256 etc);

• Adding additional instructions and hardware features;

• Testbench development and proper testing of the machine. Testing should

also be done with regard to different architecture configuration parameters

and their combinations;

• Full stack application development and testing.

In the far future, the following developments are possible:

• Multiple ways to connect to the accelerator, multiple interfaces with the host

computer;

• Clusters of accelerators - given their nature and shape, the Map-Reduce

structure can also be scaled at the multiple accelerators level.

Bibliography

[1] Nvidia, Tensor core usage tips: https://developer.nvidia.com/blog/optimizing-gpu-

performance-tensor-cores/, accessed on 20.05.2023.

[2] W. Sun, A. Li, T. Geng, S. Stuijk and H. Corporaal, "Dissecting Tensor Cores via

Microbenchmarks: Latency, Throughput and Numeric Behaviors," in IEEE Transactions on

Parallel and Distributed Systems, vol. 34, no. 1, pp. 246-261, 1 Jan. 2023, doi:

10.1109/TPDS.2022.3217824.

[3] Hồ, Khoa & Zhao, Hui & Jog, Adwait & Mohanty, Saraju. (2022). Improving GPU

Throughput through Parallel Execution Using Tensor Cores and CUDA Cores.

[4] P. M. Basso, F. F. d. Santos and P. Rech, "Impact of Tensor Cores and Mixed Precision

on the Reliability of Matrix Multiplication in GPUs," in IEEE Transactions on Nuclear Science,

vol. 67, no. 7, pp. 1560-1565, July 2020, doi: 10.1109/TNS.2020.2977583.

[5] John W. Romein, "The Tensor-Core Correlator", in Astronomy and Astrophysics, Vol.

656, Article A52, December 2021, doi: https://doi.org/10.1051/0004-6361/202141896

[6] Sparsh Mittal and Jeffrey S. Vetter. 2015. A Survey of CPU-GPU Heterogeneous

Computing Techniques. ACM Comput. Surv. 47, 4, Article 69 (July 2015), 35 pages.

https://doi.org/10.1145/2788396.

[7] Pieter Hijma, Stijn Heldens, Alessio Sclocco, Ben van Werkhoven, and Henri E. Bal.

2023. Optimization Techniques for GPU Programming. ACM Comput. Surv. 55, 11, Article

239 (November 2023), 81 pages. https://doi.org/10.1145/3570638.

[8] A. M. Turing, On computable numbers with an application to the

Eintscheidungsproblem. Proceedings of the London Mathematical Society 42, 1936.

[9] S. Kleene, “General Recursive Functions of Natural Numbers,” Mathematische

Annalen 112:727–742. 1936.

[10] G. M. Ştefan, M. Maliţa: "Can One-Chip Parallel Computing Be Liberated From Ad

Hoc Solutions? A Computation Model Based Approach and Its Implementation", 18th

International Conference on Circuits, Systems, Communications and Computers (CSCC 2014),

Santorini Island, Greece, July 17-21, 2014, 582-597.

[11] M. Maliţa, G. M. Ştefan, D. Thiebaut: "Not Multi-, but Many-Core: Designing Integral

Parallel Architectures for Embedded Computation", ACM SIGARCH Computer Architecture

News, 35 (5)32-38, Dec. 2007. Special issue: ALPS '07 - Advanced low power systems;

communication at International Workshop on Advanced Low Power Systems held in

conjunction with 21st International Conference on Supercomputing, June 17, 2007 Seattle.

[12] Mihaela Maliţa, Gheorghe Ştefan: "The Berkeley Motifs and an Integral Parallel

Architecture", in ROMJIST, vol. 12, no. 1, 2009, pag. 35-49.

[13] George-Vladuţ Popescu, " Architectures and Structures for Heterogeneous Computing

- Improvements in Data Transfer for a Heterogeneous Computing System", PhD Thesis, UPB,

Bucharest 2023.

[14] PYNQ Z2 overview, [online] Available: https://www.tulembedded.com/fpga/

ProductsPYNQ-Z2.html, accessed on 24.07.2023.

[15] George-Vlăduţ, Popescu. “Improvements in Data Transfer for a MapReduce

Accelerator”. In: Romanian Journal of Information Science and Technology (ROMJIST), 25.3-

4 (2022), pp. 368–380. ISSN: 1453-8245.

https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
https://doi.org/10.1051/0004-6361/202141896
https://doi.org/10.1145/2788396
https://doi.org/10.1145/3570638
https://www.tulembedded.com/fpga/%20ProductsPYNQ-Z2.html
https://www.tulembedded.com/fpga/%20ProductsPYNQ-Z2.html

Algorithmical and Architectural Improvements for a Map-Reduce Hardware Accelerator

8

[16] Mihai Antonescu, Gheorghe M. Stefan, "Politehnica" Univ of Bucharest, Romania:

Multi-function Scan Circuit. CAS2020; International Semiconductor Conference IEEE

conference proceedings; doi: 10.1109/CAS50358.2020.9268048.

[17] Mihai Antonescu, Gheorghe M. Stefan, "Multi-Function Scan Circuit for Assisting the

Parallel Computational Map Pattern", Romanian Journal of Information Science and

Technology (ROMJIST), Vol 27, Nr. 1 of 2024, accepted for publication.

[18] Vaclav E. Benes: Mathematical Theory of Connecting Networks and Telephone Traffic.

New York: Academic Press, 1965.

[19] Abraham Waksman. 1968. A Permutation Network. J. ACM 15, 1 (Jan. 1968), 159–

163. https://doi.org/10.1145/321439.321449.

[20] Andreea-Cătălina Pietricică, Mihai Antonescu, George-Vlăduț Popescu. "Evaluation

of AES Cryptographic Algorithm on a General-Purpose Map-Scan Accelerator", International

Semiconductor Conference CAS2023, IEEE conference proceedings, DOI:

10.1109/CAS59036.2023.10303705.

[21] "Recommendation for Block Cipher Modes of Operation" (PDF). NIST.gov. NIST. p.9.

Archived (PDF) from the original on 29 March 2017, [online] Accessed at:

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf, on 29.07.2023.

[22] J. Ma, X. Chen, R. Xu and J. Shi, "Implementation and Evaluation of Different Parallel

Designs of AES Using CUDA," 2017 IEEE Second International Conference on Data Science in

Cyberspace (DSC), Shenzhen, China, 2017, pp. 606-614, doi: 10.1109/DSC.2017.19.

[23] Mihai Antonescu, Mihaela Maliţa, “FFT on a Heterogeneous System with a General-

Purpose Map-Scan Accelerator”, at Romanian Journal of Information Science and Technology

(ROMJIST), accepted for publication.

[24] Cooley, James W.; Tukey, John W. (1965). "An algorithm for the machine calculation

of complex Fourier series". Mathematics of Computation, 1965, Vol 19 (no. 90): 297–301.

doi:10.2307/2003354. JSTOR 2003354.

[25] Mario Garrido "A Survey on Pipelined FFT Hardware Architectures", Journal of

Signal Processing Systems, vol 94, Jul. 2021.

[26] Konguvel Elango and Mu Kannan "A Survey on FFT/IFFT Processors for Next

Generation Telecommunication Systems",Journal of Circuits, Systems and Computers, vol. 27,

03.2018.

[27] I. Lörentz, M. Maliţa, R. Andonie, "Fitting FFT onto an energy efficient massively

parallel architecture" Proceedings of the Second 617 International Forum on NextGeneration

Multicore/Manycore Technologies, IFMT ’10, 8:1–8:11, 2010.

[28] Calin Bira, Liviu Gugu, Mihaela Malita, Gheorghe Stefan, "Maximizing the SIMD

Behaviour in SPMD Engines", Proceedings of 619 the WCECS 2013, Oct 2013.

[29] M. Frigo and S. G. Johnson, "The Design and Implementation of FFTW3," in

Proceedings of the IEEE, vol. 93, no. 2, pp. 216-231, Feb. 2005, doi:

10.1109/JPROC.2004.840301.

[30] Alexander Hurd, 2018, "fftw-cufftw-benchmark", Available:

https://github.com/hurdad/fftw-cufftw-benchmark, Commit cfc8aa8, Accessed on 08.05.2023.

[31] AMD-Xilinx, PG109 (04.05.2022): Fast Fourier Transform v9.1 LogiCORE IP

Product Guide, [online] Available at: https://docs.xilinx.com/r/en-US/pg109-xfft/Fast-

Fourier-Transform-v9.1-LogiCORE-IP-Product-Guide, Accessed on 08.05.2023.

[32] Mihai Antonescu, Mihaela Maliţa, Gheorghe M. Ştefan “Latency Hiding of Log-Depth

Scan and Reduce Networks in Heterogeneous Embedded Systems”, 29th International

Symposium for Design and Technology in Electronic Packaging (SIITME), 2023, IEEE

conference proceedings, accepted for publication.

https://doi.org/10.1145/321439.321449
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38a.pdf

